Abstract Remote sensing is an effective tool for studying CDOM (colored dissolved organic matter) variations and its relevant environmental factors. Monitoring CDOM distribution and dynamics in small water is often limited by the coarse spatial resolution of traditional ocean color sensors. In this study, because of its high spatial resolution of 30 m, Landsat-8 data were used to assess seasonal variations of CDOM in the Saginaw River, by using an empirical statistic model. Pearson correlation analysis between CDOM variations and other environmental factors, such as temperature, discharge, and dissolved oxygen, shows that temperature was negatively correlated to CDOM variations and discharge played a positive role. We also calculated the monthly mean aCDOM(440) (the absorption coefficient of CDOM at 440 nm) for the Saginaw River between April and November from 2013 to 2016. This study demonstrates a good example for future applications in small waters: observing CDOM variations and other relevant environmental factors change by using Landsat remote sensing, so that we can know more about water quality and ecosystem health of small waters as well as the climate change impact on regional watersheds.
Read full abstract