Real-time object tracking for unmanned aerial vehicles (UAVs) is an essential and challenging research topic for computer vision. However, the scenarios that UAVs deal with are complicated, and the UAV tracking targets are small. Therefore, general trackers often fail to take full advantage of their performance in UAV scenarios. In this paper, we propose a tracking method for UAV scenes, which utilizes background cues and aberrances response suppression mechanism to track in 4 degrees-of-freedom. Firstly, we consider the tracking task as a similarity measurement problem. In this study, we decompose this problem into two subproblems for optimization. Secondly, to alleviate the problem of small targets in UAV scenes, we utilize background cues fully. Also, to reduce interference by background information, we employ an aberrance response suppression mechanism. Then, to obtain accurate target state information, we introduce a logarithmic polar coordinate system. We perform phase correlation calculations in logarithmic polar coordinates to obtain the rotation and scale changes of the target. Finally, target states are obtained through response fusion, which includes displacement, scale, and rotation angle. Our approach is carried out in a large number of experiments on various UAV datasets, such as UAV123, DBT70, and UAVDT2019. Compared with the current advanced trackers, our method is superior on UAV small target tracking.
Read full abstract