It is now well established that, upon decreasing system sizes down to a few μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\upmu$$\\end{document}m or below, the nature of plasticity of metallic materials is changing. Two important features of this small-sizes plasticity are two size effects, which can be summed up as “smaller is stronger” and “smaller is wilder”, this last observation meaning that the jerkiness of plastic deformation becomes prominent at small enough system sizes. In FCC and HCP materials, this is now rather well understood within the framework of obstacle-controlled plasticity, from the key role of a scaling ratio between the system size L and an internal scale l mainly dictated by dislocation patterning in pure materials, or by the nature of extrinsic disorder in alloys. The situation is more complex in BCC materials, for which screw dislocation motion becomes lattice-controlled, i.e. is thermally activated, below a transition temperature Ta\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_a$$\\end{document}. Therefore, in small-sized BCC systems, temperature, size and strain-rate effects combine to give rise to a complex landscape. We show, from an analysis of the literature as well as micropillar compression tests on Molybdenum performed with different sample sizes, under different temperatures and different applied strain-rates, that (i) near or above Ta\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_a$$\\end{document}, the plasticity of pure BCC metals is athermal and obstacle-controlled, much like at bulk scales, therefore mimicking that of pure FCC metals; (ii) below Ta\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_a$$\\end{document} and for sample sizes larger than ∼\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sim$$\\end{document}1 μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\upmu$$\\end{document}m, BCC plasticity becomes lattice-controlled, this damping dislocation avalanches and thus reducing wildness; but (iii) for very small systems, still below Ta\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_a$$\\end{document}, the role of screw dislocations on plasticity vanishes, i.e. is no more lattice-controlled, opening again the door for wild plastic fluctuations and jerkiness.