Abstract
Energy landscapes are high-dimensional surfaces underlie all physical systems, which determine crucially the energetic and behavioral dependence of the systems on variable configurations, but are difficult to be analyzed due to their high-dimensional nature. Here we introduce an approach to reveal for the complete energy landscapes of spin glasses and Boolean satisfiability problems with a small system size, and unravels their non-equilibrium dynamics at an arbitrary temperature for an arbitrarily long time. Remarkably, our results show that it can be less likely for the system to attain ground states when temperature decreases, due to trapping in individual local minima, which ceases at a different time, leading to multiple abrupt jumps in the ground-state probability. For large systems, we introduce a variant approach to extract partially the energy landscapes and observe both semi-analytically and in simulations similar phenomena. This work introduces new methodology to unravel the energy landscapes and non-equilibrium dynamics of glassy systems, and provides us with a clear, complete and new physical picture on their long-time behaviors inaccessible by existing approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.