We propose a sub-1 Hz resonance frequency MEMS resonator that can be used for seismometers. The low resonance frequency is achieved by an electrically tunable spring with an ultra-small spring constant. Generally, it is difficult to electrically fine-tune the resonance frequency at a near-zero spring constant because the frequency shift per voltage will diverge at the limit of zero spring constant. To circumvent this issue, we propose a multi-step electrical tuning method. We show by simulations that the resonance frequency can be tuned by 0.008 Hz/mV even in the sub-1 Hz region. The small spring constant, however, reduces the shock robustness and dynamic range of the seismometer. To prevent this, we employ a force-balanced method in which the mass displacement is nulled by the feedback force. We show that the displacement can be obtained from the voltage that generates the feedback force.
Read full abstract