A simple but robust strategy of ball milling (20 Hz, 30 Hz for 30 s, 60 s, 120 s, 180 s) was utilized to modify bamboo shoots fiber (BSDF) in shrimp surimi. The water holding capacity, swelling capacity, and oil binding capacity of 30 Hz-60 s milled BSDF exhibited the highest values of 5.61 g/g, 3.13 mL/g, and 6.93 g/g, significantly higher (P < 0.05) than untreated one (3.65 g/g, 2.03 mL/g, 4.57 g/g). Ball-milled BSDF exhibited a small-sized structure with the relative crystallinity decreased from 40.44 % (control) to 11.12 % (30 Hz-180 s). The myosin thermal stability, gelation properties of surimi were significantly enhanced by incorporating 20 Hz-120 s and 30 Hz-60 s BSDF via promoting protein unfolding, covalent hydrophobic interactions, and hydrogen bonding. A matrix-reinforcing and water entrapping effect was observed, exhibiting reinforced networks with down-sized water tunnels. However, BSDF modified at 180 s contributed to over-aggregated networks with fractures and enlarged gaps. Appropriate ball-milled BSDF (20 Hz-120 s, and 30 Hz-60 s) resulted in a significant decrease in α-helix (P < 0.05), accompanied by an increase of β-sheets and β-turn. This work could bring some insights into the applications of modified BSDF and its roles in the gelation of surimi-based food.