Plastic production on a commercial scale began in the 1950s, reaching an annual production of 460 million metric tons in 2019. The global release of 22% of produced plastics into the environment has raised concerns about their potential environmental impacts, particularly on aquatic ecosystems. Here, we quantify and categorize plastic debris found along Richland Creek, a small, heavily forested watershed in western North Carolina, USA. Plastics within the riparian zone of seven 50 m reaches of Richland Creek and its tributaries were sampled two or three times. The 1737 pieces of collected plastic debris were returned to the lab where they were measured and categorized. A small-scale laboratory study using seven of the items collected was performed to determine their ability to break down into microplastics (particles < 5 mm in size). The majority (76%) of collected items were made of either plastic film (particularly bags and food wrappers, 43%) or hard plastics (e.g., bottles, 2%). However, when viewed on a surface area basis, films and synthetic fabrics (e.g., clothing, sleeping bags) equally dominated. Roughly three-quarters of the items collected had a width less than 10 cm, due primarily to the fragmentation of the original items; over two-thirds of the collected items were fragmented. Items composed of foams and films exhibited the highest fragmentation rates, 93% and 86%, respectively. Most collected plastics were domestic in nature, and the number of items increased downstream through more developed areas. Laboratory studies showed that plastic debris has a propensity to break down into microplastics. We believe the data collected here should be replicated in other streams, as these freshwater environments are the source of plastics that eventually enter the oceans.
Read full abstract