Rising renewable penetration has accelerated the volatility and instability of the power grid. A small-scale grid is especially vulnerable. Therefore, flexibility and stability enhancement are required for small-scale grids. The interconnection with the large-scale grid through the voltage sourced converter-high voltage direct current (VSC-HVDC) can be a solution to the aforementioned problems. VSC-HVDC can deliver power bidirectionally and change the direction in a short time. Hereby, the cooperative operation of distributed generations (DG) and a large-scale grid through the VSC-HVDC system is proposed in this paper. The VSC-HVDC will take the role of the main source of the small-scale grid. It determines the grid frequency based on its output power. DGs adjust their output power according to the grid frequency, and then the balance between the demand and the supply is maintained. To verify it, a PSCAD/EMTDC simulation was conducted using actual data from Jeju Island, including transmission lines, loads, and climate. Consequently, by the proposed method, the RE share was improved and the grid was operated stably even though the fault situations.