Plant-derived biomaterials have great application prospects in solving environmental pollution and sustainable resource utilization, but the insufficient mechanical strength and lack of functional responsiveness often limit their further development. Inspired by natural small molecules functionalization, a vacuum-assisted filtration nanofibrillated cellulose (NFC)-based film with excellent antibacterial properties, mechanical strength, and electrothermal/photothermal dual-responsiveness was fabricated. As a natural bioactive molecule, antibacterial cinnamaldehyde (CA) is grafted onto tannic acid (TA) rich in pyrogallols via a small molecule self-assembly strategy, and then co-assembled with zinc acetate (ZA) through ion crosslinking to synthesize the functional TACA@ZA nanospheres. After incorporating the MXene and TACA@ZA, an inorganic-organic 3D network system was established in the NFC matrix through dynamic intermolecular hydrogen bonding and strong ionic cross-linking. The mechanical strength and toughness of hybrid composites are remarkably improved by 83.6 % and 418.9 %, respectively. Due to the synergistic effects of MXene and TACA@ZA, the designed NFC-based film also shows significantly enhanced antibacterial activity, UV-blocking ability, as well as photothermal and electrothermal performance. This bioinspired small molecule functionalization strategy opens an innovative design concept for the fabrication of multirole NFC-based biomaterials, which has great application prospects in the commercial fields of multifunctional adhesives, electronic devices, UV shielding coatings, and antibacterial materials.