Abstract

The inferior cycling performance caused by large volume variation is the main problem that restricts the application of cobalt selenides in lithium-ion batteries. Herein, we synthesize raspberry-like Co-ethylene glycol precursor. It is further selenized into the hierarchical hollow superstructure CoSe2/CoSe bird nests that are assembled by the hollow nanosphere units of CoSe2 and CoSe nanocrystalline. CoSe2/CoSe bird nests achieve excellent cycling performance, high reversible capacity and satisfactory rate capability (1361 mAh/g at 1 A/g after 1000 cycles, 579 mAh/g at 2 A/g after 2000 cycles, 315 mAh/g at 5 A/g after 1000 cycles). Electrochemical kinetics analyses and ex-situ material characterization reveal that the surface capacitive behavior controls the electrochemical reaction, and the composite has low reaction impedance, fast and stable Li+ diffusion, and superior structural stability. The superior lithium storage performance is attributed to the unique superstructure bird nest. Large specific surface area, abundant hierarchical pores and the opening mouth result in high electrochemical activity, which induces high reversible capacity. The small hollow nanosphere units, the sufficiently thick hierarchical porous superstructure shell and the large hollow interior bring about the strong synergistic effect to improve cycling performance. The intimately coupling of CoSe2/CoSe nanocrystalline and the hollow nanosphere units guarantees high conductivity. This work has greatly enriched the understanding of structure design of high-performance cobalt selenide anodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call