Abstract

The development of cellulose derived carbon-based composite aerogels with light weight, broad bandwidth and strong absorption remains a challenging task. In this work, the cellulose derived carbon/reduced graphene oxide composite aerogels were prepared by a two-stage process of chemical crosslinking and high-temperature carbonization. The results revealed that the as-fabricated binary composite aerogels had a unique lightweight characteristic and three-dimensional porous network structure, which was chemically crosslinked by epichlorohydrin. Furthermore, the weight concentration of graphene oxide (GO) had a notable influence on the electromagnetic parameters and microwave absorption properties of the composite aerogels. The obtained binary composite aerogel possessed the optimal microwave dissipation capability when the concentration of GO was 1.5 mg/mL. Remarkably, the minimum reflection loss reached −50.42 dB at a thickness of 2.47 mm and a filling ratio of 17.5 wt%. Concurrently, the composite aerogel with a comparable thickness of 2.73 mm showed a wide effective absorption bandwidth of 7.28 GHz, spanning the total Ku-band and extending into a portion of the X-band. The radar cross section contribution of binary composite aerogels in the far-field was also simulated by computer simulation technique. In addition, the potential microwave attenuation mechanism was proposed. It was believed that the results of this paper would offer a reference for the preparation of cellulose derived carbon-based composite aerogels as efficient and broadband microwave absorbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.