Single-component organic solar cells (SCOSCs) have attracted extensive attention due to their simplified device manufacturing and excellent stability. However, the relationship between morphology and charge carrier mobility in the active layers of SCOSCs is not well understood. In this work, we present a comprehensive investigation on this issue by studying four dyads (fullerenes as acceptor units) used as materials of active layers in small-molecule single-component organic solar cells (SM-SCOSCs), in which dyad 4 created the record of power conversion efficiency (PCE) of SM-SCOSC until now. Utilizing a multiscale theoretical approach, the results identify that the acceptor-acceptor stacking is dominant in amorphous films, significantly improving electron mobility and lowering hole mobility. We also find the importance of achieving a balance between electron and hole mobility to further improve PCE of SM-SCOSC because dyad 4 exhibits a more balanced electron/hole mobility than the other three molecules. These findings indicate the importance of tuning and enhancing donor-donor and acceptor-acceptor stacking simultaneously, offering insights for the design and optimization of future SM-SCOSC.