Cancer is a global health challenge that urgently requires more sensitive and effective cancer detection methods. Fluorescence imaging with small molecule fluorescent probes has shown great promise for cancer detection but most of the developed probes lack active tumor cell targeting, which makes them unable to selectively target tumors, thereby reducing the accuracy of in vivo tumor detection. Herein, we report a novel probe Bio-S that combines a viscosity-sensitive and cell membrane targetable fluorescent group with biotin for targeted imaging and precise visualization of tumor cells and tumors. Bio-S exhibits sensitive fluorescence changes for viscosity at ∼660 nm and excellent cell membrane localization and imaging ability (red fluorescence, wash-free, and long-term imaging). Moreover, compared with the nonbiotinylated control probe C6-S, the biotinylated Bio-S can specifically target tumor cell membranes, thereby achieving much higher selectivity and sensitivity in distinguishing tumor cells from normal cells. Mice imaging experiments show that tail vein injection of Bio-S can target tumors and monitor lung cancer metastasis at the in vivo level. Therefore, this work provides an effective new strategy and tool for tumor-targeted detection and precise diagnosis.
Read full abstract