Hydrogen peroxide-based Fenton reaction can effectively degrade many small-molecule fluorescent dyes, leading to notable alterations in fluorescence signals. Additionally, the two-dimensional black phosphorus/platinum nanocomposite (BP/Pt) demonstrates exceptional catalase (CAT) characteristics. Based on these, a colorimetric-fluorescence dual-mode signal output pattern based on BP/Pt-Fenton reaction-rhodamine B tandem reaction system isreported. Thephysical adsorption property of the BP/Pt nanozymes was utilized to couple with antibodies, thus constructing a novel dual-mode nanozyme-based immuno-sensing assay (NISA). By using the migratory antibiotic enrofloxacin (ENR) as the target, the NISA providedhighly sensitive detection with the detection limits of 0.058ng/mL for colorimetric-mode and 0.025ng/mL for fluorescence-mode and achieved accurate quantitative detection in environmental water and crucian carp samples. This work provides an innovative design for monitoring antibiotics in the environment and broadens the idea for the application of nanozymes and Fenton systems in immunosensing assays.
Read full abstract