Abstract

The calcium ion (Ca2+) is an important signaling molecule implicated in many cellular processes, and the remodeling of Ca2+ homeostasis is a feature of a variety of pathologies. Typical methods to assess Ca2+ signaling in cells often employ small molecule fluorescent dyes, which are sometimes poorly suited to certain applications such as assessment of cellular processes, which occur over long periods (hours or days) or in vivo experiments. Genetically encoded calcium indicators are a set of tools available for the measurement of Ca2+ changes in the cytosol and subcellular compartments, which circumvent some of the inherent limitations of small molecule Ca2+ probes. Recent advances in genetically encoded calcium sensors have greatly increased their ability to provide reliable monitoring of Ca2+ changes in mammalian cells. New genetically encoded calcium indicators have diverse options in terms of targeting, Ca2+ affinity and fluorescence spectra, and this will further enhance their potential use in high-throughput drug discovery and other assays. This review will outline the methods available for Ca2+ measurement in cells, with a focus on genetically encoded calcium sensors. How these sensors will improve our understanding of the deregulation of Ca2+ handling in disease and their application to high-throughput identification of drug leads will also be discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.