A fourth industrial revolution is occurring in global manufacturing. It is based on the introduction ofInternet of thingsandservitizationconcepts into manufacturing companies, leading to vertically and horizontally integrated production systems. The resultingsmart factoriesare able to fulfill dynamic customer demands with high variability in small lot sizes while integrating human ingenuity and automation. To support the manufacturing industry in this conversion process and enhance global competitiveness, policy makers in several countries have established research and technology transfer schemes. Most prominently, Germany has enacted itsIndustrie 4.0program, which is increasingly affecting European policy, while the United States focuses onsmart manufacturing. Other industrial nations have established their own programs on smart manufacturing, notably Japan and Korea. This shows that manufacturing intelligence has become a crucial topic for researchers and industries worldwide. The main object of these activities are the so-called cyber-physical systems (CPS): physical entities (e.g., machines, vehicles, and work pieces), which are equipped with technologies such as RFIDs, sensors, microprocessors, telematics or complete embedded systems. They are characterized by being able to collect data of themselves and their environment, process and evaluate these data, connect and communicate with other systems, and initiate actions. In addition, CPS enabled new services that can replace traditional business models based solely on product sales. The objective of this paper is to provide an overview of the Industrie 4.0 and smart manufacturing programs, analyze the application potential of CPS starting from product design through production and logistics up to maintenance and exploitation (e.g., recycling), and identify current and future research issues. Besides the technological perspective, the paper also takes into account the economic side considering the new business strategies and models available.