BackgroundFatigue is a common complaint among patients with myasthenia gravis (MG). In this study, we investigated the alterations in muscle morphology in patients with MG experiencing fatigue using quantitative electromyography (QEMG), and explored the relationship between electrophysiological findings and the severity of both fatigue and disease. MethodsWe performed QEMG of the biceps brachii muscle using the peak ratio method and multi-motor unit potential (MUP) analysis across three groups: 18 MG patients with fatigue, 34 MG patients without fatigue, and 33 healthy subjects. Stimulated single-fiber EMG was performed on the frontalis muscle. The severity of perceived fatigue and disease was subsequently assessed using the quantitative myasthenia gravis (QMG) score, the MG-activities of daily living (MG-ADL) profile, self-reported fatigue questionnaires, and handgrip strength measurements. ResultsThe QEMG study revealed a reduced mean MUP duration and size index (SI), in addition to an increased peak ratio in patients with MG (p < 0.05), which tended to be more pronounced in those experiencing fatigue. Compared to healthy subjects, MG patients with fatigue displayed a myopathic pattern characterised by a high peak ratio, short duration, and small-amplitude MUPs, without any increase in the number of phases or small time intervals. The mean peak ratio was positively correlated with the QMG, MG-ADL, and Fatigue Impact Scale total and physical subscores (p < 0.05). Further, MG patients with fatigue exhibited reduced maximum grip strength, which was positively correlated with the mean MUP duration, amplitude, SI, and thickness, and negatively correlated with the mean peak ratio (p < 0.05). No significant differences were observed in the jitter or block measurements (p > 0.05). ConclusionsThe present study investigated electrophysiological findings that were not considered or theorised in prior studies on patients with MG experiencing fatigue. The results of this study suggest that myopathic changes may be a critical pathophysiological component underlying the fatigue associated with MG.