The sizing of microgrids depends on the type of load and its operational hours. The significance of understanding the load operational characteristics in special purpose islanded microgrids is much needed for economic system sizing. The load operation of special-purpose microgrids often consumes high power for a short duration and remains idle most of the time, thus reducing the load factor. The inclusion of such loads in microgrid sizing causes huge capital costs making islanded microgrids an unfeasible solution. The islanded microgrid under study is an agricultural microgrid in a village having a small Crab Processing Plant (CPP) and a Domestic Sector (DS). The CPP constitutes the major power consumption. The community has a unique load consumption trend that is dependent on the highly uncertain parameter of availability of the crabs. Interestingly, crab availability is an independent parameter and cannot be accurately scheduled. The existing system sizing of the microgrid is performed based on the conventional methods that consider the CPP for full-day operation. However, the microgrid sources, especially the storage system may be reflected as oversized if the crab processing plants do not operate for several days due to the uncertain behavior of CPP causing enormous power wastage. In this paper, an integrated fixed and operational mode strategy for uncertain heavy loads is formulated. The proposed algorithm is based on the optimal sizing methodology aided by the load scheduling control strategy. The Particle Swarm Optimization technique is used for the optimal sizing integrated with the fuzzy logic controller to manage the available load. The membership functions are available excess power and the state of the charge of storage that defines the operational conditions for CPP. Based on input membership functions, the fuzzy controller decides on power dispatch in DS or CPP, keeping considerable SoC available for night hours. The simulation result shows that the time-dependent fuzzy controller approach manages to provide power to both sectors under optimal sizing while reducing the overall cost by 24% less than the existing microgrid.