AbstractBees and some wasp species of the superfamily Apoidea pollinate most of the crops used for food and feed, producing different impacts on agricultural production. Despite the considerable importance of Apoidea, the relevance of this group’s impact on global crop production and human diets is controversial. To measure the pollination effect of these insects on crop production, factors such as the myriad of agricultural practices, different crop varieties, fluctuating pollinators’ densities, constantly changing environmental conditions, and demands for food items in a diverse diets must be considered. An ‘Apoidea impact factor’ (AIF), a value calculated taking into consideration the effect of this superfamily on enhancing crop production through pollination, the diversity of crops in a given area, the area planted by specific crops, and agricultural output, was calculated for 176 agricultural crops. Consistently with previous estimations, our results show that Apoidea have a direct impact on 66% of the 128 most important agricultural crops consumed in the world. However, the analysis of the impact of Apoidea on global production and human consumption revealed a different perspective: Apoidea pollination affects only 16% of the total tonnage output, 14% of the cultivated area, and 9% of the kilocalories consumed. Because 25 of the most cultivated crops in the world do not require, or are slightly affected by Apoidea pollination, and these plants grow in 84% of the world’s cropland, constituting 50% of the world’s diet, and 89% of the kilocalories consumed by peoples around of the world, the AIF at the world level is reduced to 11% of food consumed, and 6% of the kilocalories. The AIF, when applied to a small geographical scale, for example, the municipality or county level rather than country or state level, becomes more useful identifying areas where bees and wasps have greater impact in agriculture. In this report, we update the widely popular quote ‘One out of every three bites of food we eat is a result of pollinators like honey bees’ to a more accurate one: ‘nearly 5% of the food we eat, and about 10% of the calories we burn have a direct relationship with Apoidea pollination’. This new estimate does not diminish the need for pollinators for many of the world’s most nutritious foods, but merely suggests that these foods do not provide an extensive part of the human diet. The AIF can be used to identify specific areas where these pollinators have greater impact and direct conservation efforts directly into them. This approach can serve as a better estimate of the role of these pollinators in our food, using data-driven arguments.