Melt spun ribbons of a series of SmFe12Bx (x=0.0, 0.5, 0.75, 1.0, 1.25, and 1.5) have been prepared by the melt spinning technique. Sm–Fe–B melt spun ribbons with single phase TbCu7-type structure were prepared from the SmFe12Bx (x=0.5, 0.75, and 1.0) alloys at the surface velocity around 40m/s. The addition of boron not only inhibits the appearance of soft magnetic phase α-Fe, but also enhances the ability of amorphous formation for melt spun Sm–Fe ribbons. The concentration of boron atoms, however, exceeds the limit of the solubility (x>1.0) of Sm–Fe alloys, which does not impede the appearance of α-Fe but accelerates the formation of metastable phase Sm2Fe23B3 that is unfavorable to their magnetic properties. Moreover, it is found that the addition of boron whose concentration is 0.0≤x≤0.75 can stabilize the metastable TbCu7-type structure because of the increase of the lattice parameter ratio c/a. The magnetic properties of as-annealed SmFe12B1.0 melt spun ribbons with an energy product of 2.19MGOe, a coercivity of 2.36kOe and a remanence of 4.8kGs have been achieved. The microstructural characteristics of as-annealed melt spun SmFe12 and SmFe12B1.0 ribbons have been discussed as well. The following sequence of the hyperfine field H(6l)<H(3g)<H(2e) and the isomer shift δ(3g)<δ(6l)<δ(2e) is obtained by the analysis of 57Fe Mossbauer spectra. As the boron content is added gradually, the hyperfine fields of 3g and 6l sites increase slightly due to the competition of the positive electron polarization and the negative polarization. However, the value of H(2e) is almost constant.
Read full abstract