The preparation and combustion of high sulfur coal generates many waste products including cleaning and combustion wastes. Pyrite is associated with coal cleaning wastes and it makes them potentially acidic. Coal slurry solids (CSS), the finest textured cleaning wastes, are stored in large impoundments. After the impoundments are retired, they must be reclaimed with a 1.2 in soil cap. Reclamation of abandoned CSS impoundments by direct revegetation would avoid costs associated with the required soil cap. However, CSS have physical and chemical limitations for plant growth including undesirable pH, surface temperatures, and moisture holding capacity. Fluidized bed combustion is a coal combustion technique designed to reduce smoke stack emissions of SO{sub 2}. It results in a highly alkaline by-product (FBC). The combination of CSS and FBC may allow direct revegetation of CSS materials. This would possibly be a more cost effective method of reclaiming CSS materials than using a soil cap while creating an economic value for FBC by-products. This will also preclude the necessity of disturbing a borrow area for the soil cap. An experiment was designed to evaluate the potential for CSS/FBC mixtures to support direct revegetation. Three test blocks with 18 plots each were established on amore » temporarily inactive portion of an active coal slurry impoundment. The addition of FBC increased the pH of the potentially acidic CSS. Soil fertility analyses indicated Al, B, Ca, Mg, Zn, and soluble salts increased with additions of FBC, while Cu, Fe, K, P, and S remained relatively unchanged, and Mn and Na concentration decreased. Direct revegetation of CSS materials may be facilitated by the addition of FBC by-products. However, other treatments in addition to FBC amendments may be necessary to optimize conditions for plant growth.« less
Read full abstract