Chemical mechanical planarization (CMP) of metal components is an essential step in the fabrication of integrated circuits. Metal CMP is a complex process where strategically activated (electro)chemical reactions serve to structurally weaken the surface layers of the material being processed, and the resulting overburdens are removed under low-force abrasion. Understanding the tribo-electrochemical mechanisms of this process is crucial to successfully designing the consumable materials for advanced CMP slurries that are needed for the new technology nodes. Using a model CMP system involving copper (wiring material in interconnect structures) and molybdenum (a new diffusion barrier material for copper), the present work illustrates a tribo-electroanalytical scheme for studying various mechanistic details of metal CMP. Electroanalytical probes are employed both in the absence and in the presence of surface polishing to quantify the interplay between mechanical abrasion and chemical surface modification. Weakly alkaline slurry formulations are tested with variable concentrations of silica abrasives and a complexing agent, citric acid. The results serve to examine the link between material removal and tribo-corrosion and to identify the functions of the active slurry additives in governing the rates and selectivity of material removal for CMP.
Read full abstract