Due to the increasingly strict legislation about the disposal of sewage sludge, it is necessary to find sustainable solutions to manage this waste at low-cost conditions. In addition, priority contaminants are now attracting much attention since they are usually detected in WWTP effluents. In this work, five sludge have been used as precursors for the synthesis of activated carbons subsequently tested in the removal by adsorption of three neonicotinoid pesticides listed in the EU Watch List: acetamiprid (ACT), thiamethoxam (THM), and imidacloprid (IMD). Generally, the activated carbons were prepared by chemical activation using ZnCl2 as an activating agent and then the resulting materials were pyrolyzed at 800 °C for 2 h. The synthesized activated carbons showed different textural properties; thus, the best adsorption results were found for AC-Industrial activated carbon, obtained from an industrial origin sewage sludge, with high equilibrium adsorption capacities (qe = 104.2, 137.0, and 119.9 mg g−1), for ACT, THM, and IMD, respectively. Furthermore, it was elucidated that the use of CO2 in the synthesis generated an opening, followed by widening, of the narrowest microporosity, increasing the specific surface area of the carbon materials. The kinetic and isotherm adsorption experimental data were obtained for each of the pesticide-activated carbon systems; thus, the kinetic curves were well-fitted to the pseudo-second-order kinetic model, as well as, Freundlich and Guggenheim-Anderson-de Boer (GAB) empirical models were used for the fitting of the equilibrium adsorption isotherms, finding that GAB model best fitted the experimental data. Additionally, the regeneration of the activated carbons using methanol as a regenerating agent and the single and simultaneous adsorption of a hospital wastewater effluent, fortified with the three studied pesticides have been explored.