Abstract
Pyrolysis carbonisation is a promising technology to convert organic waste into valuable carbon-based materials. However, sludge is generally highly compressible and difficult to dewater because of its high concentrations of biopolymers; the bound water of sludge is trapped in a network composed of biopolymers. Therefore, chemical conditioning is an indispensable step for improving sludge dewaterability performance. In the present work, the effects of different chemical conditioning agents (polymeric aluminium chloride (PACl), iron(III) chloride (FeCl3), KMnO4-Fe(II) and Fenton's reagent) on the physicochemical properties of sludge-based carbons (SBCs) were systematically studied and the SBCs were further used in advanced wastewater treatment. The adsorption mechanisms of dissolved organic matters (DOMs) by different SBCs were also investigated. The results showed that conditioning with KMnO4-Fe(II) and Fenton's reagent improved the specific surface area of the SBCs, whereas inorganic salt flocculation conditioning reduced the porosity of the SBCs. In addition, we found that the Fenton-SBC and Mn/Fe-SBC performed better than the other investigated SBCs in the removal of organic compounds from secondary effluent and that the pseudo-second-order kinetic model could better describe the process of DOMs adsorption by all of the investigated SBCs. Moreover, three-dimensional fluorescence excitation-emission matrix spectroscopy in combination with an analysis of the physical and chemical fractionation of DOMs showed that all of the SBCs performed well in the adsorption of aromatic substances, hydrophobic acids and hydrophobic neutrals, whereas the Mn/Fe-SBC and Fenton-SBC performed better than the other SBCs in the removal of weakly hydrophobic acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.