The stress corrosion cracking (SCC) susceptibility of electron beam melted Ti-6Al-4V alloy (ET) was compared with the conventional wrought alloy (WT). The electrochemical and slow strain rate tensile (SSRT) tests, as well as surface analysis, were conducted under simulated shallow and deep-sea environment. Under shallow conditions, the SCC susceptibility of both alloys was almost the same because of consistent passivation and repassivation performance of the passivating film. However, under deep-sea conditions, SCC susceptibility of ET was higher than that of WT due to stronger textured-like surface that appeared on ET alloy, where early developed passive film broke down, demonstrating lower passivation and repassivation rate.