Continuously operating global positioning system sites in the North Island of New Zealand have revealed a diverse range of slow motion earthquakes on the Hikurangi subduction zone. These slow slip events (SSEs) exhibit diverse characteristics, from shallow (<15 km), short (<1 month), frequent (every 1–2 years) events in the northern part of the subduction zone to deep (>30 km), long (>1 year), less frequent (approximately every 5 years) SSEs in the southern part of the subduction zone. Hikurangi SSEs show intriguing relationships to interseismic coupling, seismicity, and tectonic tremor, and they exhibit a diversity of interactions with large, regional earthquakes. Due to the marked along-strike variations in Hikurangi SSE characteristics, which coincide with changes in physical characteristics of the subduction margin, the Hikurangi subduction zone presents a globally unique natural laboratory to resolve outstanding questions regarding the origin of episodic, slow fault slip behavior. ▪ New Zealand's Hikurangi subduction zone hosts slow slip events with a diverse range of depth, size, duration, and recurrence characteristics. ▪ Hikurangi slow slip events show intriguing relationships with seismicity ranging from small earthquakes and tremor to larger earthquakes. ▪ Slow slip events play a major role in the accommodation of plate motion at the Hikurangi subduction zone. ▪ Many aspects of the Hikurangi subduction zone make it an ideal natural laboratory to resolve the physical processes controlling slow slip.
Read full abstract