Abstract

AbstractThe coupling at the interface between tectonic plates is a key geophysical parameter to capture the frictional locking across plate boundaries and provides a means to estimate where tectonic strain is accumulating through time. Here, we use both interferometric radar (InSAR) and Global Navigation Satellite System (GNSS) data to investigate the plate coupling of the Hikurangi subduction zone beneath the North Island of New Zealand, where multiple slow slip cycles are superimposed on the long‐term loading. We estimate the plate coupling across the subduction zone over three multi‐year observational periods targeting different stages of the slow slip cycle. Our results highlight the importance of the observational time period when interpreting coupling maps, emphasizing the temporal variability of plate coupling. Leveraging multiple geodetic data sets, we demonstrate how InSAR provides powerful constraints on the spatial resolution of both plate coupling and slow fault slip, even in a region where a dense GNSS network exists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.