The heat dissipation of wheel hub motors is difficult due to the limited installation space and harsh working environment, which will lead to an increase in the operating temperature of the motor. Excessive motor temperature will limit the further increase in the power density and torque density of the motor. Taking the outer rotor hub motor as the research object, a heat dissipation structure is designed by passing oil through the stator core, slot wedge, and the motor end, mainly the cooling stator core, slot winding, and the end winding from inside of the motor. The internal heat is mainly carried away through lubricating oil by convective heat transfer and heat conduction. The heat distribution model of the motor based on the new cooling structure is established using the centralized parameter heat network method. The Motor-CAD software is used to build the motor 3d model and simulate the motor temperature field, and the temperature distribution in the motor under the rated working condition is analyzed. The temperature rising test of the motor prototype are performed on a bench built in the laboratory. The experimental results are consistent with the simulation results of the temperature field, which verify the rationality of the model.
Read full abstract