In the field of medical diagnosis and patient monitoring, effective pattern recognition in neurological time-series data is essential. Traditional methods predominantly based on statistical or probabilistic learning and inference often struggle with multivariate, multi-source, state-varying, and noisy data while also posing privacy risks due to excessive information collection and modeling. Furthermore, these methods often overlook critical statistical information, such as the distribution of data points and inherent uncertainties. To address these challenges, we introduce an information theory-based pipeline that leverages specialized features to identify patterns in neurological time-series data while minimizing privacy risks. We incorporate various entropy methods based on the characteristics of different scenarios and entropy. For stochastic state transition applications, we incorporate Shannon’s entropy, entropy rates, entropy production, and the von Neumann entropy of Markov chains. When state modeling is impractical, we select and employ approximate entropy, increment entropy, dispersion entropy, phase entropy, and slope entropy. The pipeline’s effectiveness and scalability are demonstrated through pattern analysis in a dementia care dataset and also an epileptic and a myocardial infarction dataset. The results indicate that our information theory-based pipeline can achieve average performance improvements across various models on the recall rate, F1 score, and accuracy by up to 13.08 percentage points, while enhancing inference efficiency by reducing the number of model parameters by an average of 3.10 times. Thus, our approach opens a promising avenue for improved, efficient, and critical statistical information-considered pattern recognition in medical time-series data.
Read full abstract