Based on corrosion kinetics and fracture mechanics, it has been possible to determine quantitatively the corrosion fatigue life for three different types of corrosion behavior. Under general, active corrosion, corrosion fatigue life is controlled by the corrosion rate and the applied alternating stress range. If pitting corrosion occurs, corrosion fatigue life depends on the incubation time for nucleating a pit, the pit growth kinetics, and a critical pit depth, which is a function of the applied stress range. It has been assumed that under passive corrosion conditions, the passive layer has to be penetrated by slip steps, to form corrosion fatigue cracks. The corrosion fatigue crack initiation in this case is controlled by the repassivation kinetics of the material and also by a critical notch depth, depending on the applied stress range. It has been found that a critical current density exists, below which no corrosion fatigue cracks can initiate. Comparison of the theoretically calculated life times with experimental results showed a quite good correlation.