This paper addresses non-linear sliding mode controller (SMC) with matched and unmatched uncertainties for load frequency control (LFC) application in three-area interconnected power system. In conventional LFC scheme, as the nominal operating point varies due to system uncertainties, frequency deviations cannot be minimized. These lead to degradation in the dynamic performance or even system instability. In this paper, an effective control law is proposed against matched and unmatched uncertainties.. The proposed controller has ability to vary closed-loop system damping characteristics according to uncertainties and load disturbances present in the system. The frequency deviation converges to zero with minimum undershoot/overshoot, fast settling time, significantly reduced chattering and ensures asymptotic stability. In addition, the controller is robust in the presence of parameter uncertainties and different disturbance patterns. It also guarantees high dynamic performance in the presence of governor dead band (GDB) and generation rate constraint (GRC). Simulations are performed to compare the proposed controller with linear SMC. Using proposed control strategy, undershoot/overshoot and settling time gets reduced by approximately 30% with respect to linear SMC. The computed performance indices and qualitative results establish the superiority as well as applicability of the proposed design for the LFC problem. Further, the proposed controller scheme is validated on IEEE 39 bus large power system.
Read full abstract