The general characteristics of the bouncing vibrations of a IDOF contact slider model over the surface of a harmonic wavy disk were studied both by computer simulation and theoretical analysis. The necessary design conditions for a contact slider and the surface of a disk were discussed in terms of perfect contact sliding and wear durability. It was found that the bouncing vibrations change with the amount of waviness amplitude A(fr) at the contact resonant frequency fr(=(1/2π)kc/m) relative to static penetration depth δ, or fr relative to limiting critical frequency fcl, above which the downward acceleration of the surface of a disk is larger than that of a slider due to slider load. When the contact stiffness is large enough so that δ < A(fr) (fcl < fr), the slider bounces with a large amplitude similar to an elastic impact in a wide frequency range. When the contact stiffness is small enough so that δ > A(fr) (fcl > fr), bouncing vibrations occur near the contact resonance, similar to the resonance of a nonlinear soft spring system. Here, the bouncing vibration can be completely eliminatedby increasing the contact damping ratio and decreasing the slider mass and the waviness amplitude.
Read full abstract