To assess the impact of acquisition and reconstruction factors on the robustness of radiomics within photon-counting detector CT (PCD-CT). A phantom with twenty-eight texture materials was scanned with different acquisition and reconstruction factors including reposition, scan mode (standard vs high-pitch), tube voltage (120 kVp vs 140 kVp), slice thickness (1.0 mm vs 0.4 mm), radiation dose level (0.5 mGy, 1.0 mGy, 3.0 mGy, 5.0 mGy, vs 10.0 mGy), quantum iterative reconstruction level (0/4, 2/4, vs 4/4), and reconstruction kernel (Qr40, Qr44, vs Qr48). Thirteen sets of virtual monochromatic images at 70-keV were reconstructed. The regions of interest were drawn with rigid registrations. Ninety-three radiomics features were extracted from each material. The reproducibility of radiomics features was evaluated using the intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The variability of radiomics features was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). The percentage of features with ICC > 0.90 and CCC > 0.90 were high when repositioned (88.2% and 88.2%) and tube voltage was changed (87.1% and 87.1%), but none of the features with ICC > 0.90 and CCC > 0.90 when high-pitch scan and different slice thickness were used. The percentage of features with CV < 10% and QCD < 10% were high when repositioned (47.3% and 68.8%) and tube voltage was changed (64.2% and 71.0%), but that with CV < 10% and QCD < 10% were low between standard and high-pitch scans (16.1% and 26.9%) and slice thickness (19.4% and 29.0%). The PCD-CT radiomics was robust to tube voltage, radiation dose, reconstruction strength level, and kernel, but brittle to high-pitch scan and slice thickness. Question The stability of radiomics features against acquisition and reconstruction factors within PCD-CT should be fully determined before academic research and clinical application. Findings The radiomics features are robust against tube voltage, radiation dose, reconstruction strength level, and kernel within PCD-CT but brittle to high-pitch scan and slice thickness. Clinical relevance The high-pitch scan and slice thickness that influence voxel size should be set with careful attention within PCD-CT, to allow a higher robustness of radiomics features before the implementation of radiomics analysis in clinical routine.
Read full abstract