Previous studies have suggested that cardiovascular responses elicited by injection of glycine into the nucleus tractus solitarii (NTS) depend upon interactions between glycinergic and cholinergic neuronal elements in NTS. Release of acetylcholine in response to glycine is one such interaction that has been shown in slices of hippocampus and striatum. In this study we sought to test the hypothesis that glycine causes release of acetylcholine from neurotransmitter stores in NTS. We compared release from NTS with that from adjacent hypoglossal nucleus and from caudate nucleus. Release of radiolabeled acetylcholine was determined in vitro after incubating NTS with [ 3H]choline. Exposure of NTS and caudate nucleus, but not hypoglossal nucleus, to glycine caused release of acetylcholine in a calcium-dependent manner that varied with concentration of glycine in the incubation medium. The maximally effective concentration (1 mM) of glycine elicited 136% increases over basal levels. Glycine did not elicit release of [ 3H]acetylcholine from tissue when calcium ion had been removed from the bath. Acetylcholine also was not released if tissue was incubated with either strychnine (10 μM) or hemicholinium-3 (1 mM) prior to exposure to glycine (1 mM). Thus, glycine, acting at strychnine-sensitive receptors in NTS, elicits release of acetylcholine from a portion of locally synthetized neurotransmitter stores.
Read full abstract