The competitive calendars in sports often lead to fluctuations in the effort-recovery cycle and sleep quality. NESA noninvasive neuromodulation, achieved through microcurrent modulation of the autonomic nervous system, holds promise for enhancing sleep quality and autonomic activation during stressful situations. The objective of this study was to analyze the sleep and recovery responses of basketball players over six weeks of training and competition, with the integration of NESA noninvasive neuromodulation. A preliminary experimental study involving 12 participants was conducted, with a placebo group (n = 6) and an intervention group (n = 6) treated with NESA noninvasive neuromodulation. Sleep variables and biomarkers such as testosterone, cortisol, and the cortisol:testosterone ratio were analyzed to assess player recovery and adaptations. Significant differences were observed in total, duration, and REM sleep variables (p-value= < 0.001; 0.007; <0.001, respectively) between the intervention and placebo groups. The intervention group demonstrated increased duration of sleep variables. Cortisol levels showed normalization in the experimental group, particularly in the last two weeks coinciding with the start of playoffs. This study highlights the potential of NESA noninvasive neuromodulation to enhance sleep quality despite challenging circumstances, providing valuable insights into the management of athlete recovery in competitive sports settings.