The demand for cost-effective and accessible alternatives to polysomnography (PSG), the conventional diagnostic method for obstructive sleep apnea (OSA), has surged. In this study, we have developed and validated a deep learning model for detecting apnea-hypopnea events using radar data. We conducted a single-center prospective cohort study, dividing participants with suspected sleep-disordered breathing into development and temporally independent test sets. Utilizing a hybrid CNN-Transformer architecture, we performed fivefold cross-validation on the development set to develop and subsequently validate the model. Evaluation metrics included sensitivity for event detection, mean absolute error (MAE), intraclass correlation coefficient (ICC), and Pearson correlation coefficient (r) for apnea-hypopnea index (AHI) estimation. Linearly weighted kappa statistics (κ) assessed OSA severity. The development set comprised 54 participants (July 2021-May 2022), while the test set included 35 participants (June 2022-June 2023). In the test set, our model achieved an event detection sensitivity of 67.2% (95% CI = 65.8% to 68.5%) and demonstrated a MAE of 7.54 (95% CI = 5.36 to 9.72), indicating good agreement (ICC = 0.889 [95% CI = 0.792 to 0.942]) and a strong correlation (r = 0.892 [95% CI = 0.795 to 0.945]) with the ground truth for AHI estimation. Furthermore, OSA severity estimation showed substantial agreement (κ = 0.780 [95% CI = 0.658 to 0.903]). Our study highlights radar sensors and advanced AI models' potential to improve OSA diagnosis, paving the path for future radar-based diagnostic models in sleep medicine research.
Read full abstract