Magnetic skyrmions have great potential in the application of spintronic devices due to their stable topologically protected spin configuration. To meet the needs of spintronic device design, it is necessary to manipulate the movement of the magnetic skyrmions. Here we propose a skyrmion diode based on potential well induced skyrmion motion through theoretical calculations. The potential well is generated by the voltage-controlled magnetic anisotropy (VCMA) gradient. By utilizing the induction of the potential well as well as the skyrmion Hall effect (SkHE), the velocity and trajectory of the skyrmions can be controlled and the forward pass and reverse cutoff functions of diode-like devices have been realized. Furthermore, we report the dynamics of current-driven skyrmions in a racetrack with locally applied VCMA. Under the influence of the SkHE, the difference in dynamic behavior between forward and reverse motion of the skyrmions is obvious, and the potential well can produce different pinning, depinning and annihilating effects on forward and reverse moving skyrmions. Our results can be beneficial for the design and development of magnetic skyrmion diodes.
Read full abstract