Traffic sign recognition is of great significance to promote traffic sustainability and maintain traffic safety. GPS monitoring systems and advanced autonomous vehicles are often heavily reliant on camera imagery. Algorithms based on dark channel prior are susceptible to color distortion when processing traffic images containing bright sky or high-brightness areas, which can negatively impact the identification of traffic signals and signage located in elevated positions. To address this issue, this paper proposes a dehazing algorithm (SRSTO) that combines sky region segmentation and transmittance optimization. Firstly, the gradient, brightness and saturation information are calculated, followed by the construction of a threshold function used in area segmentation. This approach is utilized to partition the image into areas not containing sky highlights and the area that contains them. Subsequently, the dark channel images of the sky and the non-sky regions are acquired, morphological operations are further performed in layers and blocks, and then the atmospheric scattered light value is calculated. Secondly, the functional relationship between the transmittance of the sky region and the brightness of the image is constructed, the transmittance of the sky and the non-sky region are optimized, and the transmittance map is further improved by using guided filtering. A simulated annealing algorithm is employed to intelligently optimize parameters such as sky segmentation threshold and sky brightness area transmittance, followed by improving the adaptability of the algorithm. Finally, combined with Gaussian filtering and Sobel edge enhancement, the image brightness is further adjusted. Using Information Entropy and NIQE as objective evaluation indexes, combined with subjective evaluation, it is concluded that the proposed method has good convergence and self-adaptive ability, and the objective indexes and subjective effects are better, especially for the hazed images containing air traffic signs.