RNA polymerase mitochondrial (POLRMT) expression and the potential biological functions in skin squamous cell carcinoma (SCC) were explored. We showed that POLRMT is significantly elevated in skin SCC. Genetic depletion of POLRMT, using shRNA-induced knockdown or CRISPR/Cas9-mediated knockout (KO), resulted in profound anti-skin SCC cell activity. In patient-derived primary skin SCC cells or immortalized lines (A431 and SCC-9), POLRMT shRNA or KO potently suppressed mitochondrial DNA (mtDNA) transcription and suppressed cell viability, proliferation and migration. POLRMT shRNA or KO impaired mitochondrial functions in different skin SCC cells, leading to production of ROS (reactive oxygen species), depolarization of mitochondria and depletion of ATP. Moreover, mitochondrial apoptosis cascade was induced in POLRMT-depleted skin SCC cells. IMT1, a POLRMT inhibitor, largely inhibited proliferation and migration, while inducing depolarization of mitochondria and apoptosis in primary skin SCC cells. Contrarily, ectopic overexpression of POLRMT increased mtDNA transcription and augmented skin SCC cell growth. Importantly, POLRMT shRNA adeno-associated virus injection robustly hindered growth of the subcutaneous A431 xenografts in mice. In the POLRMT shRNA virus-treated A431 xenograft tissues, POLRMT depletion, mtDNA transcription inhibition, cell apoptosis, lipid peroxidation and ATP depletion were detected. Together, overexpressed POLRMT increases mtDNA transcription and promotes skin SCC growth.
Read full abstract