Abstract

BackgroundTissue stem cells (SCs) and cancer cells proliferation is regulated by many common signalling mechanisms. These mechanisms temporally balance proliferation and differentiation events during normal tissue homeostasis and repair. However, the effect of these aberrant signalling mechanisms on the ultimate fate of SCs and cancer cells remains obscure.MethodsTo evaluate the functional effects of Secretory Phospholipase A2-IIA (sPLA2-IIA) induced abnormal signalling on normal SCs and cancer cells, we have used K14-sPLA2-IIA transgenic mice hair follicle stem cells (HFSCs), DMBA/TPA induced mouse skin tumour tissues, human oral squamous cell carcinoma (OSCC) and skin squamous cell carcinoma (SCC) derived cell lines.FindingsOur study demonstrates that sPLA2-IIA induces rapid proliferation of HFSCs, thereby altering the proliferation dynamics leading to a complete loss of the slow cycling H2BGFP positive HFSCs. Interestingly, in vivo reversion study by JNK inhibition exhibited a significant delay in post depilation hair growth, confirming that sPLA2-IIA promotes HFSCs proliferation through JNK/c-Jun signalling. In a different cellular context, we showed increased expression of sPLA2-IIA in human OSCC and mouse skin cancer tissues. Importantly, a xenograft of sPLA2-IIA knockdown cells of OSCC and SCC cell lines showed a concomitant reduction of tumour volume in NOD-SCID mice and decreased JNK/c-Jun signalling.InterpretationThis study unravels how an increased proliferation induced by a common proliferation inducer (sPLA2-IIA) alters the fate of normal SCs and cancer cells distinctively through common JNK/c-Jun signalling. Thus, sPLA2-IIA can be a potential target for various diseases including cancer.FundThis work was partly supported by the Indian Council of Medical Research (ICMR-3097) and ACTREC (42) grants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.