Inspired by camouflage-colored organisms, the development of bio-camouflage systems using electrochromic (EC) technology has gained significant interest. However, existing EC systems struggle with achieving a wide color gamut, noniridescent colors, and self-sustainability. Herein, a self-sustainable color-adaptive bio-camouflage system integrating EC and nanogenerator (NG) technologies, enabling environmental color adaptation, and thermal regulation without an external power source is proposed. The system is based on a zinc-anode EC device (ZECD) with an asymmetric structure, incorporating flexible tungsten oxide and vanadium oxide electrodes. During the EC process, tungsten oxide shifts between blue and transparent, allowing near-infrared thermal modulation, while the vanadium oxide transitions from yellow to transparent. This design enables reversible near-infrared modulation and noniridescent color conversion among black, blue, green, yellow, and transparent. For the self-sustainability of the system, an electromagnetic and triboelectric hybrid NG that collects biomechanical energy is developed. In a typical driven cycle, the integrated system transitions colors and achieves significant near-infrared spectral modulation, demonstrating environmental adaptability and thermal regulation. Experiments on human skin and simulated chameleon color changes further confirm the system's effectiveness. This work highlights the potential of integrating EC and NG technologies to advance color-adaptive camouflage systems, opening new an avenue for bio-camouflage design.