Color variation between histological images may influence the performance of computer-aided histological image analysis. Therefore, among the most essential and challenging tasks in histological image analysis are the reduction of the color variation between images and the preservation of the histological information contained in the images. In recent years, many methods have been introduced with respect to the color normalization of histological images. In this study, we introduce a new clustering method referred to as the skewed normal distribution mixed model clustering algorithm. Realizing that the color distribution of hue values approximates the combination of several skewed normal distributions, we propose to use the skewed normal distribution mixture model to analyze the hue distribution. The proposed skewed normal distribution mixture model clustering algorithm includes saturation-weighted hue histograms because it takes into account the saturation and hue information of a particular histogram image, which can diminish the influence of achromatic pixels. Finally, we conducted extensive experiments based on three data sets and compared them with commonly used color normalization methods. The experiments show that the proposed algorithm has better performance in stain separation and color normalization compared to other methods.
Read full abstract