Primary culture of gilthead sea bream skeletal muscle cells was used to examine the effects of growth hormone (GH) and insulin-like growth factors (IGFs) in fish muscle proliferation and growth. Proliferation was measured as the percentage of positive cells expressing the proliferating cell nuclear antigen (PCNA) analyzed by immunocytochemistry. First, the effects of GH from two different origins (mammals and fish) were tested. GH from human (hGH) did not stimulate proliferation except at 3 h at the dose of 1 nM. On the other hand, sea bream GH (sbGH) significantly stimulated proliferation, without differences between the three incubation times studied (3, 6, and 18 h), at the dose of 10 nM, demonstrating that the homologous hormone has a more potent effect. In addition, the results with the IGFs indicated that both peptides, IGF-I and IGF-II significantly stimulated proliferation of sea bream myocytes, but IGF-II showed higher effects than IGF-I, and even than those of sbGH. Finally, the combinations of peptide treatments (GHs with IGFs) indicated that IGF-I has higher effects on proliferation when it is combined with GHs compared with IGF-I alone, while IGF-II has similar effects alone or combined with either GH. These results indicate that IGF-II may have an important role on muscle proliferation that appears to be independent of GH. On the contrary, IGF-I seems to play a synergistic action with GH stimulating myocyte proliferation.