Composite materials with magnetic fillers play an important role in a number of industries, from functional coatings in electronics to electromagnetic wave absorption and microwave-shielding materials. An important feature is the selection of a magnetic nano-sized filler that does not cause increased degradation of the polymer binder, and the selection of a polymer that ensures the weather resistance of the nanocomposite material. In this study, composite samples of micro- and nanofibers based on fabricated particles of nanosized magnetite (Fe3O4) as a cheap electromagnetic wave absorption material were investigated. Magnetic polymer-dielectric fibers polystyrene-Fe3O4 were obtained by electrospinning. The X-ray diffraction analysis showed that the synthesized Fe3O4 nanoparticles have a cubic space group structure Fd3m with crystal lattice parameter a = 8.422±0.026 Å. The analysis of the ferromagnetic resonance spectrum showed the ferromagnetic nature of the obtained magnetite nanoparticles. It has been shown that during the production of composite fibers by electrospinning, a dispersion of nano-sized magnetite powder can be included in the spinning solution, which, as a result of the electrospinning process, allows obtaining magnetic composite micro- and nanofibers. The average size of the included magnetite particles was15±3 nm. The resulting non-woven magnetic material is predominantly composed of two types of fibers with an average diameter of 680±280 nm and larger associated fibers with a diameter of 1500±300 nm. Based on a certain frequency ependence of losses upon reflection RL in the frequency range 15 MHz – 7.0 GHz, the synthesized fibrous material can be considered to be an effective electromagnetic wave absorption material.
Read full abstract