AbstractThe composition: 10KNbO3-10Fe2O3-50B2O3-30V2O5 (in mol%) is produced using the conventional melt quenching method and their corresponding glass–ceramic nanocomposites were studied. The structural properties of the as-quenched sample and its heat-treated samples were investigated using X-ray diffraction and differential thermal analysis. Density (ρ) was found to decrease with increasing average nanocrystallite size as the molar volume increases. Studies on thermoelectric power have been carried out. The glass–ceramic nanocomposite after 2 h of heating exhibits significant improvement of electrical conductivity. The activation energy (W), polaron radius (rp) and other parameters have been estimated in the non-adiabatic region. The current–voltage (I–V) curve of each sample was measured. A temporal analysis of current & voltage in nonlinear I–V curves show pinched hysteresis loop, which is the memristor’s fingerprint. The glass–ceramic nanocomposite after 2 h of heating exhibits a large switching window. The results of the study enable us to predict that they will be helpful for future applications of non-volatile electronic-memory devices.