Purpose. To establish influence regularity of sand, water and clay preparation conditions on vitability of frozen mixtures made from combinations of these components and to increase the castings quality in foundries, as well as to improve technologies for artificial freezing of soils for underground constructions. Methodology. In this research, sand, clay, and water are used. Ice quality is estimated visually after water freezing at -15 °C in glass tubes. Frozen mixtures’ vitability at -15 °C is studied on beam-type samples. As indicators of survivability, the time to 1 mm bending of samples on supports and the time to their destruction are accepted. The time is recorded with a stopwatch, the temperature with an alcohol thermometer, the mass with electronic scales and the deflection arrow with a clock-type indicator. Findings. The presence and amount of water-soluble impurities in rare water significantly influence the nature, size and distribution of gas bubbles in ice, as well as frozen sand-water mixtures vitability. Frozen mixtures’ survivability increases with water content in them increasing, and, for sand water mixtures, survivability is maximum if ice has a homogeneous structure. Among mixtures with clays, the mixture with non-swollen kaolin clay has the greatest vitability. Regarding survivability, recommendations for manufacturing products from frozen foundry mixtures have been developed. Originality. For the first time, deformation change kinetics (bending arrows) under the influence of beam-type samples’ self-mass from mixtures of quartz sand and water and quartz sand, clay and water frozen at -15 °C, which have been previously prepared in different ways, have been investigated. Insights into the influence of various factors and ice quality on the vitability of frozen mixtures have been further developed. Practical value. The obtained results can be useful for expanding ideas about natural frozen soils’ behavior during their cyclic temperature changes, soils artificially frozen during mine shafts elaboration, escalators’ and junctions’ tunnels, etc. when constructing subways. In foundries, the developed recommendations will reduce technological losses and will improve casting quality made using frozen casting molds and cores from sand-water or sand-clay-water mixtures, castings’ patterns and their pouring systems from sand-water mixtures.