Abstract Self-interacting dark matter (SIDM) has the potential to significantly influence galaxy formation in comparison to the cold, collisionless dark matter paradigm (CDM), resulting in observable effects. This study aims to elucidate this influence and to demonstrate that the stellar mass Tully-Fisher relation imposes robust constraints on the parameter space of velocity-dependent SIDM models. We present a new set of cosmological hydrodynamical simulations that include the SIDM scheme from the TangoSIDM project and the SWIFT-EAGLE galaxy formation model. Two cosmological simulations suites were generated: one (Reference model) which yields good agreement with the observed z = 0 galaxy stellar mass function, galaxy mass-size relation, and stellar-to-halo mass relation; and another (WeakStellarFB model) in which the stellar feedback is less efficient, particularly for Milky Way-like systems. Both galaxy formation models were simulated under four dark matter cosmologies: CDM, SIDM with two different velocity-dependent cross sections, and SIDM with a constant cross section. While SIDM does not modify global galaxy properties such as stellar masses and star formation rates, it does make the galaxies more extended. In Milky Way-like galaxies, where baryons dominate the central gravitational potential, SIDM thermalises, causing dark matter to accumulate in the central regions. This accumulation results in density profiles that are steeper than those produced in CDM from adiabatic contraction. The enhanced dark matter density in the central regions of galaxies causes a deviation in the slope of the Tully-Fisher relation, which significantly diverges from the observational data. In contrast, the Tully-Fisher relation derived from CDM models aligns well with observations.
Read full abstract