Protein conjugation to biomaterial scaffolds is a powerful approach for tissue engineering. However, typical chemical conjugation methods lack site-selectivity and can negatively impact protein bioactivity. To overcome this problem, a site-selective strategy is reported here for installing tetrazine groups on terminal poly-histidines (His-tags) of recombinant proteins. These tetrazine groups are then leveraged for bio-orthogonal conjugation to poly(ethylene glycol) (PEG) hydrogel microparticles, which are subsequently assembled into microporous annealed particle (MAP) hydrogels. Efficacy of the strategy is demonstrated using recombinant, green fluorescent protein with a His tag (His-GFP), which enhanced fluorescence of the MAP hydrogels compared to control protein lacking tetrazine groups. Subsequently, to demonstrate efficacy with a therapeutic protein, recombinant human bone morphogenetic protein-2 (His-BMP2) was conjugated. Human mesenchymal stem cells growing in the MAP hydrogels responded to the conjugated BMP2 and significantly increased mineralization after 21 days compared to controls. Thus, this site-selective protein modification strategy coupled with bio-orthogonal click chemistry is expected to be useful for bone defect repair and regeneration therapies. Broader application to the integration of protein therapeutics with biomaterials is also envisioned.
Read full abstract