The yeast mitochondrial HMG-box protein, Abf2p, is essential for maintenance of the mitochondrial genome. To better understand the role of Abf2p in the maintenance of the mitochondrial chromosome, we have isolated a multicopy suppressor (YHM2) of the temperature-sensitive defect associated with an abf2 null mutation. The function of Yhm2p was characterized at the molecular level. Yhm2p has 314 amino acid residues, and the deduced amino acid sequence is similar to that of a family of mitochondrial carrier proteins. Yhm2p is localized in the mitochondrial inner membrane and is also associated with mitochondrial DNA in vivo. Yhm2p exhibits general DNA-binding activity in vitro. Thus, Yhm2p appears to be novel in that it is a membrane-bound DNA-binding protein. A sequence that is similar to the HMG DNA-binding domain is important for the DNA-binding activity of Yhm2p, and a mutation in this region abolishes the ability of YHM2 to suppress the temperature-sensitive defect of respiration of the abf2 null mutant. Disruption of YHM2 causes a significant growth defect in the presence of nonfermentable carbon sources such as glycerol and ethanol, and the cells have defects in respiration as determined by 2,3,5,-triphenyltetrazolium chloride staining. Yhm2p may function as a member of the protein machinery for the mitochondrial inner membrane attachment site of mitochondrial DNA during replication and segregation of mitochondrial genomes.
Read full abstract