The junction specific capacitance (C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ) is an essential parameter in designing tuning circuitry for superconductor- insulator-superconductor (SIS) mixers. However, our knowledge of the junction capacitance only relies on the few available empirically obtained C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> versus specific normal resistance (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> A) relations, which are inconsistent especially at low R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> A values, R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> A <; 40 Ω·μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . In this paper, we report the Nb/Al-AlO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> /Nb SIS junction capacitance data from our recently presented direct microwave (4 GHz) measurements at 4 K for junctions with various R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> A values ranging from 8.8 to 68 Ω·μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . New insight is provided into the extraction of the true geometrical specific capacitance of SIS junctions. We show that even at such low microwave frequencies, the so-far-neglected nonlinear susceptance is significant, especially for junctions with low R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> A values. This susceptance originates from the real part of the response function, I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">KK</sub> , which can be calculated through the Kramers-Kronig transform of the dc tunnel current. The new specific capacitance, which accounts for this contribution, is presented as a function of R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> A. We provide an improved and more accurate C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> A) relation, which can be a reliable and useful tool for circuit designers. The obtained C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> A) relation is compared with those available in the literature, and the possible reasons giving rise to the disparity among these relations are discussed. By comparing the modeled and the measured noise temperature of the APEX SHeFI band 3\(385-500 GHz) double sideband mixer, we show that the new C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> A) relation offers a great potential for improving the performance of SIS mixers.